Propagation of an Electromagnetic Wave

A GIF Animation

Electromagnetic waves are waves which can travel through the vacuum of outer space. Mechanical waves, unlike electromagnetic waves, require the presence of a material medium in order to transport their energy from one location to another. Sound waves are examples of mechanical waves while light waves are examples of electromagnetic waves.

Electromagnetic waves are created by the vibration of an electric charge. This vibration creates a wave which has both an electric and a magnetic component. An electromagnetic wave transports its energy through a vacuum at a speed of 3.00 x 108 m/s (commonly known as "c"). The propagation of an electromagnetic wave through a material medium occurs at a net speed which is less than 3.00 x 108 m/s. This is depicted in the animation below.

The mechanism of energy transport through a medium involves the absorbtion and re-emission of the wave energy by the atoms of the material. When an electromagnetic wave impinges upon the atoms of a material, the energy of that wave is absorbed. The absorbtion of energy causes the electrons within the atoms to undergo vibrations. After a short period of vibrational motion, the vibrating electrons create a new electromagnetic wave with the same frequency as the first electromagnetic wave. While these vibrations occur for only a very short time, they delay the motion of the wave through the medium. Once the energy of the electromagnetic wave is re-emitted by an atom, it travels through a small region of space between atoms. Once it reaches the next atom, the electromagnetic wave is absorbed, transformed into electron vibrations and then re-emitted as an electromagnetic wave. While the electromagnetic wave will travel at a speed of c (3 x 108 m/s) through the vacuum of interatomic space, the absorbtion and re-emission process causes the net speed of the electromagnetic wave to be less than c. This is observed in the animation below.

The actual speed of an electromagnetic wave through a material medium is dependent upon the optical density of that medium. Different materials cause a different amount of delay due to the absorbtion and re-emission process. Furthermore, different materials have their atoms more closely packed and thus the amount of distance between atoms is less. These two factors are dependent upon the nature of the material through which the electromagnetic wave is traveling. As a result, the speed of an electromagnetic wave is dependent upon the material through which it is traveling.

 


For more information on physical descriptions of waves, visit The Physics Classroom. Specific information is available there on the following topics:

Other animations can be seen at the Multimedia Physics Studios. Other useful resources regarding the physics of motion and waves is available through the Glenbrook South Physics Home Page.


This page was created by Tom Henderson of Glenbrook South High School.

Comments and suggestions can be sent by e-mail to Tom Henderson.

This page last updated on 8/17/98.