Вычисление собственных значений  и сингулярных чисел разреженных матриц

Применение функции eigs решает проблему собственных значений, состоящую в нахождении нетривиальных решений системы уравнений, которая может быть интерпретирована как алгебраический эквивалент системы обыкновенных дифференциальных уравнений в явной форме Коши: A*v=l*v.[ Усовершенствованный алгоритм eig позволяет использовать eig для расчета собственных значений и полных, и разреженных матриц, но для получения собственных векторов разреженных матриц по-прежнему желательно использовать именно eigs. — Примеч. ред. ] Вычисляются только отдельные выбранные собственные значения или собственные значения и собственные векторы:

В случае одного выходного параметра D — вектор, содержащий 6 самых больших собственных значений матрицы А. В случае двух выходных аргументов [V.D] = eigs(A) D — диагональная матрица размера 6x6, содержащая эти 6 самых больших собственных значений, и V — матрица, содержащая б столбцов, являющихся соответствующими собственными векторами. [V.D.flag] = eigs(A) возвращает флаг, равный 0, если все возвращенные собственные значения сходятся, и 1 в противном случае.

  1. eigs(A.K) и eigs(A,B,K) возвращают не 6, а К самых больших собственных значений. eigs(A,K,sigma) Heigs(A,B,K.sigma) возвращают не 6, а К собственных значений, выбранных в зависимости от значения параметра sigma;

  2. 'lm' — самые большие (как и по умолчанию) по абсолютной величине;

  3. ' sm' — самые малые по абсолютной величине;

  4. ' l а' и ' sa' — соответственно самые большие и самые малые алгебраически собственные значения для действительных симметрических матриц;

  5. 'be' — для действительных симметрических матриц возвращает и самые большие, и самые малые алгебраически собственные значения поровну, но если К нечетное, то самых больших значений на 1 больше, чем самых малых;

  6. 'lr' и 'sr' — для несимметрических и комплексных матриц возвращают соответственно собственные значения с самыми большими и самыми малыми действительными частями;

  7. '1i' и 'si'— для несимметрических и комплексных матриц возвращают соответственно собственные значения с самыми большими и самыми малыми мнимыми частями;

  8. скаляр - ближайшие к величине slgma. В этом случае матрица В может быть только симметрической (или эрмитовой) положительно полуопределенной, а функция Y = AFUN(X) должна возвращать Y = (A-SIGMA*B)\X.
  1. OPTS.issym: симметрия А или A-SIGMA*B, представленной AFUN [{0} | 1];

  2. OPTS.isreal: комплексные А или A-SIGMA*B, представленной AFUN [0 | {1}];

  3. OPTS.tol: сходимость: аbs(с1_вычисленное-с1_действительное) < tоl*аbs(с1_вычисленное) [скаляр){eps}];

  4. OPTS.maxit: наибольшее число итераций [положительное целое | {300}];

  5. OPTS.р: число векторов Ланцо (Lanczos): K+l<p<=N [положительное целое | {2К}];

  6. OPTS.v0: начальный вектор [вектор размера N| {произвольно выбирается библиотекой ARPACK}];

  7. OPTS.disp: уровень вывода диагностической информации [0 | {1} | 2J;

  8. OPTS.cholВ: В — это множитель Холецкого chol (В) [{0} | 1];

  9. OPTS.permB: разреженная матрица В равна chol (B(perm(B) .perm(B)) [perm(B) | {1:N}], perm — перестановка.

Функция svds служит для вычисления небольшого числа сингулярных чисел и векторов большой разреженной матрицы. По мере возможности старайтесь использовать svd(fulKA)) вместо svds(A). Если А прямоугольная матрица mxn, svds(A....) манипулирует с несколькими собственными значениями и собственными векторами, возвращенными EIGS(B,...), где В = [SPARSE(М.М) A: A' SPARSE(N.N)]. Положительные собственные значения симметрической матрицы В равны сингулярным числам А.

Как видно из приведенного материала, система MATLAB предлагает пользователям уникальный набор матричных операторов и функций, заметно более полный, чем у других математических систем. Это открывает широчайшие возможности в решении всех видов математических задач, в которых используются современные матричные методы.