ГЛАВА 5. ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ

5.1. Кристаллические полупроводниковые материалы.

Полупроводниковые материалы — это вещества с четко выраженными свойствами полупроводников в широком интервале температур, включая комнатную ($T\sim300~{\rm K}$). Они характеризуются значениями удельной электропроводности ($\sigma\sim10^4~-10^{-10}~{\rm Cm}\cdot{\rm cm}^{-1}$ при $T\sim300~{\rm K}$), промежуточными между электропроводностью металлов и хороших диэлектриков. В отличие от металлов, концентрация подвижных носителей заряда в полупроводниковых материалах значительно ниже концентрации атомов, а электропроводность σ возрастает с ростом T. Для полупроводниковых материалов характерна высокая чувствительность электрофизических свойств к внешним воздействиям (нагрев, облучение, деформация и т. д.), а также к содержанию примесей и структурных дефектов.

По структуре полупроводниковые материалы делятся на кристаллические, аморфные, жидкие. Ряд органических веществ также проявляют полупроводниковые свойства и составляет обширную группу органических полупроводников. Наибольшее значение имеют неорганические кристаллические полупроводниковые материалы, которые по химическому составу разделяются на элементарные, двойные, тройные и четвертные химические соединения, растворы и сплавы. Полупроводниковые соединения классифицируют по номерам групп периодической таблицы элементов, к которым принадлежат входящие в их состав элементы.

5.2. Основные группы кристаллических полупроводников.

- 1. Элементарные полупроводниковые материалы: Ge, Si, C (алмаз), B, a-Sn, Te, Se и др. Важнейшими представителями этой группы являются Ge и Si основные материалы полупроводниковой электроники. Обладая 4 валентными электронами, атомы Ge и Si образуют кристаллическую решётку типа алмаза, где каждый атом имеет 4 ближайших соседа, с каждым из которых связан ковалентной связью (координация соседей тетраэдрическая). Они образуют между собой непрерывный ряд твёрдых растворов, также являющихся важными полупроводниковыми материалами.
- 2. Соединения типа $A^{III}B^V$. Имеют в основном кристаллическую структуру типа сфалерита. Связь атомов в кристаллической решётке носит преимущественно ковалентный характер с некоторой долей (5—15%) ионной составляющей. Важнейшие представители этой группы: GaAs, InP, InAs, InSb, GaP. Многие полупроводниковые материалы $A^{III}B^V$ образуют между собой непрерывный ряд твёрдых растворов тройных и более сложных ($Ga_xAl_{1-x}As$, $GaAs_xP_{1-x}$, $Ga_xIn_{1-x}P$, $Ga_xIn_{1-x}As_yP_{1-y}$ и т. д.), которые также являются важными полупроводниковыми материалами.
- 3. Соединения элементов VI группы (О, S, Se, Te) с элементами I V групп, а также с переходными и редкоземельными металлами. Среди этих полупроводниковых материалов наибольший интерес представляют соединения типа . Они имеют кристаллическую структуру типа сфалерита или вюрцита, реже типа NaCl. Связь между атомами носит ковалентно-ионный характер (доля ионной составляющей порядка 45—60%). Для полупроводниковых материалов типа характерны явление полиморфизма и наличие политипов кубической и гексагональной модификаций. Важнейшие представители: CdTe, CdS, ZnTe, ZnSe, ZnO, ZnS. Многие полупроводниковые материалы типа образуют между собой непрерывный ряд твёрдых растворов. Важнейшие из них: Физические свойства в значительной мере определяются комментрацией собствениих точениях дефактор структуры, проярияющих

значительной мере определяются концентрацией собственных точечных *дефектов* структуры, проявляющих электрическую активность (центры рассеяния и рекомбинации).

Соединения типа имеют кристаллическую структуру типа NaCl или орторомбическую. Связь между атомами — ковалентно-ионная. Типичные представители: PbS, PbTe, SnTe. Они образуют между собой

Соединения типа имеют кристаллическую структуру типа сфалерита с $^{1}/_{3}$ незаполненных катионных узлов. По своим свойствам занимают промежуточное положение между и . Для них характерны низкие решёточная теплопроводность и *подвижность носителей заряда*. Типичные представители: $Ga_{2}Te_{3}$, $Ga_{2}Se_{3}$, $In_{2}Te_{3}$.

4. Тройные соединения типа . Кристаллизуются в основном в решётке халькопирита. Обнаруживают упорядочение в магнитных и электрических полях. Образуют между собой твёрдые растворы. Типичные представители: $CdSnAs_2$, $CdGeAs_2$, $ZnSnAs_2$.

5. Карбид кремния SiC — единственное соединение, образуемое элементами IV группы между собой. Существует в нескольких структурных модификациях: $\beta - SiC$ (структура сфалерита), $\alpha - SiC$ (гексагональная структура), имеющая около 15 разновидностей. Среди множества политипов наиболее актуальными для ультрафиолетовой фотометрии являются политипы 6H - SiC и 4H - SiC с $E_g = 3.0$ эВ и $E_g = 3.2$ эВ соответственно. Важными достоинствами SiC являются его способность работать при высоких емпературах (высокотемпературная фотоэлектроника), высокая насыщенная скорость электронов, отсутствие деградации при длительном мощном ультрафиолетовом излучении и нечувствительность SiC фотодиодов к видимому и инфракрасному свету. Высокочувствительные фотодиоды используются для обнаружения озона в воздухе, в качестве детекторов ядерных частиц и детекторов пламени газовых турбин и ракет.

5.3. Некристаллические полупроводниковые материалы

Типичными представителями являются стеклообразные полупроводниковые материалы — халькогенидные и оксидные. К первым относятся сплавы Tl, P, As, Sb, Bi с S, Se, Te, характеризующиеся широким диапазоном значений $^{\sigma}$, низкими температурами размягчения, устойчивостью к кислотам а щелочам. Типичные представители: As₂Se₃ — As₂Te₃, Tl₂Se — As₂Se₃. Оксидные стеклообразные полупроводниковые материалы имеют состав типа $V_2O_5 - P_2O_5 - PO_X$ (P — металл I — IV групп); $^{\sigma} = 10^{-4} - 10^{-5}$ Ом⁻¹·см⁻¹. Стеклообразные полупроводниковые материалы имеют электронную проводимость, обнаруживают фотопроводимость и термоэдс. При медленном охлаждении обычно превращаются в кристаллические полупроводниковые материалы.

Важными некристаллическими полупроводниковыми материалами являются также твёрдые растворы водорода в аморфных полупроводниках (гидрированные некристаллические полупроводниковые материалы): α -Si(H), α -Si_{1-x}C_x(H), α -Si_{1-x}Ge_x(H), α -Si_{1-x}N_x(H), α -Si_{1-x}Sr_x(H). Водород обладает высокой растворимостью в тих полупроводниковых материалах и замыкает на себя значительное количество «болтающихся» связей, характерных для аморфных полупроводниковых материалов. В результате резко снижается *плотность* состояний носителей заряда в запрещённой зоне п появляется возможность создания p-n переходов.

5.4. Применение полупроводниковых материалов Основной областью применения полупроводниковых материалов микроэлектроника. Полупроводниковые материалы составляют основу современных больших и сверхбольших интегральных схем (ИС), которые делаются в основном на Si. Повышение быстродействия и снижение потребляемой мощности связаны с созданием ИС на основе GaAs, InP и их твёрдых растворов с другими соединениями Полупроводниковые материалы используют для изготовления «силовых» электронных приборов (вентилей, тиристоров, мощных транзисторов). Здесь также основным полупроводниковым материалом является Si, а дальнейшее продвижение в область более высоких рабочих температур связано с применением GaAs, SiC и других широкозонных полупроводниковых материалов. Расширяется применение полупроводниковых материалов в солнечной энергетике. Основными полупроводниковыми материалами для изготовления солнечных батарей являются Si, GaAs, гетероструктуры , Cu_2S — CdS, гидрированных полупроводниковых применением некристаллических материалов связаны перспективы снижения стоимости солнечных батарей. Полупроводниковые материалы используются в производстве полупроводниковых лазеров и светоизлучающих диодов. Лазеры изготовляют на основе ряда прямозонных соединений Важнейшими полупроводниковыми материалами для изготовления инжекиионных лазеров являются гетероструктуры: . Для изготовления светодиодов используют GaAs, GaP,